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Abstract 

As computing technology continues to advance, computational modeling of scientific and engi- 
neering problems produces data of increasing complexity: large in size and unstructured in shape. 
Volume visualization of such data is a challenging problem. This paper proposes a distributed 
parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. 
Both the data and the rendering process are distributed among processors. At each processor, 
ray-casting of local data is performed independent of the other processors. The global image 
compositing processes, which require inter-processor communication, are overlapped with the 
local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from 
previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, 
and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from 
two to 128 processors show, on average, about 60% parallel efficiency. 
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1    Introduction 

Computational modeling of scientific and engineering problems with complex geometries often 

uses finite volume methods or finite element approximations, and thus calculations are carried 

out on unstructured grids. Typically, the problem domain is decomposed into small cells, called 

elements. Popular element types include the tetrahedron, triangular prism (pentahedron) and 

hexahedron. Many visualization techniques have been developed for the interrogation and anal- 

ysis of unstructured-grid data. While exterior face rendering and cutting plane methods remain 

the most common and affordable techniques, three-dimensional methods such as direct volume 

rendering have received considerable attention because they can capture the overall data domain 

in a single image, and are capable of revealing complex features in the data that traditional 

three-dimensional graphics techniques fail to represent. 

For most scientific and engineering problems, large-scale simulations can generate data with 

hundreds of thousands of elements or more. The absence of a simple indexing scheme for three- 

dimensional unstructured grids makes direct volume rendering a computationally expensive pro- 

cess. Since parallel processing enables the solution of many other compute-intensive problems, 

computer graphics and visualization researchers have also been exploiting various parallel meth- 

ods for volume rendering. 

In this paper, we describe a distributed parallel volume ray-casting algorithm for visualizing 

unstructured-grid data. This algorithm differs from previous ones in several ways: it is completely 

distributed, less view-dependent, reasonably scalable, and flexible. First, both the data and the 

rendering computation are distributed across the available processing nodes. Inter-processor 

communication is only needed for the image compositing step. At each processor, ray-casting 

of local data is performed independent of other processors. Image compositing is overlapped 

with the ray-casting processes to achieve higher parallel efficiency. Second, the overhead due to 

view changes is kept to a minimum since a good distributed rendering algorithm must cope with 

frequent view changes to support truly interactive data exploration. Third, while using more 

processing nodes increases the number of image compositing layers, the image area that each 

processor must handle decreases; as a result, the algorithm is scalable. Without dynamic load 

balancing, we have achieved, on average, 60% parallel efficiency on the Intel Paragon using from 

two to 128 processors. Complete test results and some performance studies are presented at the 
end of the paper. 

Finally, although the prototype implementation handles only tetrahedral cells, the algorithm 

can be generalized to handle a mix of cell types and arbitrary object geometry, such as objects 

with holes and concavities. Note that while this paper focuses on the design and implementation 

of a parallel Tenderer as a postprocess, another equally important goal is to support runtime 

monitoring of large-scale parallel simulations, which may generate data that is too large to move 

elsewhere for postprocessing. This algorithm is flexible enough to support this goal as well. 



2    Visualization on Unstructured Grids 

Data visualization on unstructured grids requires multiple steps to obtain maximum efficiency due 

to the irregularity of the grids. Yarmarkovich and Gelberg [23] describe preprocessing methods to 

achieve interactive visualization for techniques like exterior-face rendering, slicing and iso-surface 

rendering. Gallagher and Nagtegaal [4] present an algorithm based on the marching cubes iso- 

surface extraction method [10]. However, unlike the basic marching cubes algorithm, the surface 

patches derived are represented by parametric bi-cubic polynomials to achieve visually smooth 

appearance. These surface patches are then subdivided into planar polygons for rendering using 

hardware Gouraud shading. Koyamada and Nishio [9] describe two approaches for extracting 

iso-surfaces from tetrahedral elements. One is based on the marching cubes algorithm and the 

other is a ray-tracing method. In the ray-tracing approach, a diffusive iso-surface is made by 

raising the opacity in the region containing the iso-value. 

For direct volume rendering, there are generally two approaches: ray-tracing and projection. 

Garrity [5] uses a ray-tracing approach for rendering tetrahedra. Elements of other types are 

handled by first subdividing them into tetrahedra. For each ray, exterior faces are tested to find 

the first intersection point, and subsequent intersection points can be efficiently calculated by 

using the connectivity between elements. Giertsen [6] proposes a different ray-tracing approach 

by slicing the data along each horizontal scanline. The intersection of the slicing plane and the 

data elements results in a set of planar polygons, which are triangulated. Each resulting triangle 

is broken into segments and pixel-aligned segments are composited to form an image. 

In the projection approach, elements are first sorted in visibility order. Then each element 

is projected onto the screen in either front-to-back or back-to-front order. The element's con- 

tribution to each pixel is calculated and blended with existing values. Williams [21] develops 

an algorithm for determining the visibility order of elements. Max, Hanrahan and Crawfis [13] 

describe an accurate, but computationally expensive, analytic illumination model for use with 

their projection algorithm. Shirley and Tuchman [16] propose a splatting algorithm which pro- 

vides a fast approximation to the projection process. Williams [20] further approximates Shirley 

and Tuchman's splatting algorithm to achieve better interactive rendering rates. These fast ap- 

proximation methods are suggested for use in data previewing, rather than producing realistic 

or accurate visualization. 

On the other hand, the development of massively parallel rendering algorithms for irregular 

data has been rather sparse. Notably, Williams [22] developed a cell-projection volume rendering 

algorithm for finite element data running on a single SGI multiprocessor workstation. Uselton 

[19] implemented a volume ray-tracing algorithm for curvilinear grids on a similar platform. 

The tests were performed for up to eight processors and high parallel efficiency was obtained. 

Challinger [2] developed a parallel volume ray-tracing algorithm for nonrectilinear grids and 

implemented it on the BBN TC2000, a multiprocessor architecture with up to 128 nodes. Note 

that all three of these used shared-memory parallel computers. Finally, Giertsen and Petersen 

[7] designed a scanline volume rendering algorithm based on Giertsen's previous work [6] and 
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Figure 1: A Distributed Parallel Rendering Process. 

implemented it on a network of workstations. Data are replicated on each workstation, and a 

master-slave scheme is used to achieve dynamic load balance. However, tests were performed 

with a maximum of four workstations, so the scalability of the algorithm and the implementation 
for massively parallel processing has yet to be demonstrated. 

3    A Parallel Rendering Algorithm 

We have developed a flexible and efficient distributed parallel volume ray-casting algorithm. 

Figure 1 depicts the parallel rendering process which consists of multiple steps. In this paper, 

we only consider rendering as a postprocess. For runtime visualization, rendering data in place 

on the same computer where the parallel simulation runs involves additional considerations; for 

example, data partitioning should comply with and be done by the simulation. As described in 

[11], these considerations do not change the basic algorithm and are not discussed here. Handling 

grids that change dynamically at runtime would be a future research topic. 



3.1 Data Partitioning 

Partitioning of the computational domain and its associated data structures is also an important 

problem for computational researchers implementing large-scale unstructured grid calculations 

on distributed-memory computers. Most of the partitioning algorithms developed are recursive 

and based on graph bisection [8]. In essence, the computational domain, represented as an 

undirected graph, is subdivided into two subdomains based on some criterion; then the same 

criterion is applied to the subdomains recursively. A good partitioning for parallel simulation 

results in subdomains of about equal size and minimizes boundary area between subdomains. 

While the first property helps load balancing, the second reduces inter-processor communication. 

To take full advantage of a distributed-memory parallel computer like the Intel Paragon, the 

first step is to partition the data volume into p subvolumes, where p is the number of processors 

used. A perfect subdivision should produce subvolumes with identical memory and processing 

requirements to achieve good load balancing. Nevertheless, the requirements of visualization 

calculations are generally very different from the simulation's. The criterion used by the parallel 

simulation may not be applicable. We have used a graph-based data-partitioning software pack- 

age to obtain reasonably even subvolumes, i.e. subvolumes containing about the same number 

of elements. 

3.2 Data Preprocessing 

An unstructured-grid data set is composed of at least a set of nodes and a list of elements that 

are constructed from the nodes. At each node, its coordinates [x,y,z] and some function values 

like density or pressure are stored. In order to efficiently execute the visualization processes, we 

need to know more than the existing element-node relationship. A data structure which we call 

the hierarchical data structure (hds) is created during a preprocessing step. An hds consists of 

three layers of data structures. A node set is a data structure at the lowest layer, from which 

a face set is constructed. The top layer of the hds is an element set constructed from the face 

set. Therefore, an hds records the face-node, element-face, and element-node relationships, which 

allow fast information retrieval in the expense of additional memory space. 

The subsequent ray-casting operations always begin at the boundary of the unstructured 

domain, which is formed by the exterior faces. An exterior face is a face that is not shared by 

elements. As a result of data partitioning, there are two types of exterior faces: globally and 

locally. Globally exterior faces represent the boundary of the whole volume. Locally exterior 

faces form the boundary of each subvolume. After data partitioning, while a globally exterior 

face is always a locally exterior face, a globally interior face might become a locally exterior one. 

Since our algorithm need not distinguish the globally exterior faces from the local ones, for the 

rest of the discussion, when we mention an exterior face, we mean a locally exterior face. 

According to the current viewing position, an exterior face can be either a visible or an invisible 

one.  A ray enters a subvolume at a visible exterior face and exits at an invisible exterior one, 
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Figure 2: Face Types in a Subvolume. 

as shown in Figure 2. The visible exterior faces are orthographically projected onto the screen. 

This projection produces a set of convex polygons in screen coordinates, which define the exact 

screen area for casting rays. So it is necessary to distinguish the visible exterior faces from the 
invisible ones. 

It is clear that we can separate the view-dependent preprocessing from the view-independent 

preprocessing calculations. Therefore, after data are distributed to processors, each processor 

performs two preprocessing steps independent of other processors. The first step, the view- 

independent one, finds connectivity between elements, identifies all exterior faces, calculates face 

normals, etc. This step needs to be done only once. The view-dependent step then follows to 

extract all visible faces from the set of exterior faces; whenever the viewing position is changed, 

the exterior face list is searched to find a new set of faces visible from the current viewing position. 

3.3    Ray-Casting 

The local rendering process traverses the visible-face list and performs ray-casting in scanline 

order from face to face. A ray is cast from the eye, enters the data domain through an exterior 

face and marches element by element until it exits from the domain through another exterior face. 

The irregular shapes common to unstructured data often result in concavity and holes in the 

body of the data volume. Especially for distributed computing, the original grid is partitioned 

into subgrids that often have saw-toothed boundaries as shown in Figure 3 and the left image 

of Color Plate 1. Thus a ray may enter and exit multiple exterior faces. With the connectivity 

information, the casting of a ray is straightforward except for some degenerate elements [5]. 

The intensity of the ray is obtained by accumulating the intensity values contributed by all 

elements visited. For each element, the equation for intensity /(a, b) of the corresponding ray 
segment is given by 

/(a, b)= f V &{s)dsI(t)dt 
Ja 

where a and b define where the ray enters and leaves the element, a is the attenuation coefficient, 
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Figure 3: Rays Passing Saw-toothed Boundaries. 

and I(t) is the intensity at a point t along the ray. In [13], analytic formulas are derived 

to compute the intensity accumulated in a ray segment. In general the color and the opacity 

mapping of function values cannot be defined by an analytic function, so it is difficult, sometimes 

impossible, to derive a closed form solution for computing the intensity values. For a linear 

element, a good approximation, according to the Gaussian Quadrature [18], is to compute the 

intensity value at the middle of the segment and to use that value for the segment. Then two 

points are sampled for a quadratic element and three points are sampled for a cubic element. 

The Gaussian Quadrature integration approximates a polynomial of degree 2n — 1 by using n 

points. In this way, the order of precision is (2n — 1) which is acceptable for our purpose. 

In practice, because the color and opacity transfer functions used are usually not polynomials, 

even for a linear element, it might be necessary to sample at multiple points along the ray segment 

within the element. That is, sampling along a ray should be selected according to not only the 

data resolution and the variation of data values, but also the variation of the transfer function 
values. 

To implement adaptive sampling, considering an element with a linear interpolation function 

f(x,y,z), if a ray P(t) enters the element at t = a and exits at t = b, the sample rate can be 
defined as 

r    =    k(f(P(b))-f(P(a))) 
b — a 

where P(t) = P(0) + td, P(0) is the starting point of the ray, d is the direction of the ray, and k 

is a constant which is the sampling rate for a unit change of function value. However, ray-casting 

on unstructured grids is already a very expensive operation. Adaptive sampling makes it even 

more expensive and could significantly increase the overall rendering time. 

Consequently, in our current implementation, we used a much simpler approach by precom- 

puting a dt value for sampling along a ray at a fixed rate. A good principle for sampling linear 



elements is that, besides the entering and leaving points a and 6, at least one additional point c is 

sampled for each element. Then between each pair of sample points, a reasonable approximation 

is to use the Trapezoid rule [18] to calculate the value of the corresponding interval. 

To estimate dt, we use 

lx       I        lz 
dt   =   0.5xmm(-^=,——,——) 

,3/nI  ,3/n7  -?/nR 

where lx, ly, and lz are the size of the bounding box (in x, y and z direction, respectively) contain- 

ing the domain, and ne is the total number of elements in the domain. Using such estimation, 

more samples would be collected than needed within a large element of constant value. The 

advantages of using a fix sampling rate is mainly simpler implementation. We applied the above 

formula to data sets of significantly different grid characteristics and found that it generates 
reasonably good sampling interval values. 

At each sample point on the ray, the interpolated function value is used to obtain a color and an 

opacity from a look-up table. The intensity value at that point is then computed using these color 

and opacity values. The final image value corresponding to each ray is formed by compositing, 

front-to-back, the intensity values of the sample points along the ray. The compositing operation 

is associative [15], which allows us to break a ray up into segments, process the sampling and 

compositing of each segment independently, and combine the results from each segment via a 

final compositing step. This is the basis for our parallel volume rendering algorithm. 

3.4    Image Compositing 

In parallel rendering of regular data, image compositing order can always be determined a priori. 

Many efficient parallel image compositing algorithms for the rendering of regular data have been 

proposed [1, 12, 14]. However, as indicated previously, an unstructured domain tends to be 

irregular in shape and may contain holes and concavities. The situation could be more severe 

for subdomains after data partitioning. Consequently, the ray segments which contribute to an 

individual pixel cannot be combined until they are all received and properly sorted in visibility 
order by the responsible processor. 

There are essentially two approaches for delivering ray segments to the responsible processors. 

While the first approach is to separate the local rendering completely from the global compositing, 

the second one is to overlap them. That is, in the first approach, the delivery and compositing 

of ray segments does not occur until the local ray-tracing process is completely finished. At the 

end of the rendering, ray segments are then divided into groups and each group is sent to the 

responsible processor. In the second approach, a ray segment can be sent immediately after it is 

generated. Therefore, the first approach would result in large messages being sent all about the 

same time, likely to induce network congestion [3]. 

On the other hand, with the second approach, smaller messages are sent throughout the entire 

course of rendering. To reduce the number of messages, groups of ray segments are sent imme- 

diately following the rendering of one locally visible face. Ray segments are divided into groups 
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Figure 4: Both the shape of the data and the data partitioning affect a ray buffer. 

according to their corresponding destinations. Then, ray segments received at each processor 

are sorted into a local ray buffer by destination pixel. Sorted ray segments are composited in 

order at the end of rendering. The final subimage generated by each processor is sent back to 

the host computer. According to our tests and others [14, 17], overlapping the ray casting and 

compositing can improve the overall image compositing performance by as much as 40%. 

There are different ways of partitioning image space [14]. As shown later, compared to the 

ray-tracing cost, the image compositing cost is relatively low with the kind of preprocessing that 

has been done. In our current implementation, for simplicity, the image space is partitioned 

evenly into horizontal strips. More elaborate image partitioning will be considered later when 

attaining interactive rendering rates. 

3.4.1    Ray Buffer 

The efficiency of the compositing process is affected by the number of ray segments stored in the 

ray buffer. A ray buffer is a two dimensional array of linked lists. For performing distributed 

image compositing, each processor is assigned a portion of the final image. A corresponding local 

ray buffer is created for storing incoming ray segments. Each incoming ray segment is sorted into 

the linked list pointed to by the corresponding pixel address. Prior to the start of rendering, each 

processor allocates an empty ray buffer according to the image decomposition scheme. During 

the course of the rendering, the size of the ray buffer grows. The final size depends on the viewing 

position, the shape of the data volume and how the data partitioning has been done. An ideal 

data partitioning would produce compact subvolumes that are simple in shape, resulting in ray 

buffers of minimum size. As shown in Figure 4, tracing of Ray 2 would produce many local ray 

segments which would then result in a much longer linked list than Ray 1 and 3 because of the 
view direction as well as the partitioning. 



4    Test Results 

We have tested an implementation of the rendering algorithm on the Intel Paragon XP/S by 

using an artificial data set and a flow data set from a computational fluid dynamics simulation. 

Message passing was implemented by using the native communication library, NX. A host 

program runs on a service node of the Paragon for delivering data and collecting results. In 

this study, we ignore I/O problems and focus on the rendering algorithm. All timing results are 

given in seconds and are calculated by averaging the times obtained on each node from rendering 

an animation sequence of ten frames covering various viewing directions, and then selecting the 
maximum averaged value among all participating nodes. 

The artificial volume data set has some well understood properties in both data values and 

grid topology. The data domain is composed of tetrahedra of identical size. The overall domain 

is cubical in shape and the layout of elements is symmetrical. Thus we call it the cube data set. 

The highest intensity value is assigned to the center of the domain with decreasing values toward 

the boundaries of the domain. The overall volume contains 150 thousand tetrahedra. In Color 

Plate 1, the right image shows a volume-rendered image of such a data set. Unlike exterior-face 

rendering, direct volume rendering allows us to see through the volume and visualize properties 

inside the volume by assigning low opacity to low intensity data values. The left image of 

Color Plate 1 shows exterior-face rendering of a particular subvolume. We plot grid lines on the 

subvolume boundary to show the grid structure and the resolution of the data. 

The flow data set is typical in numerical modelings that use unstructured grids. It is the result 

of simulating flow over a vehicle forebody at a Mach number of 8.15 and an angle of attack of 

30 degrees. The flow field contains a detached bow shock following the shape of the forebody. 

There are about 45.5 thousand tetrahedra. The left image of Plate 2 shows an exterior-face 

rendering of this volume data. The grid lines on the exterior faces are also plotted to show 

the the highly adaptive grid structure. Since only the region surrounding the vehicle body is 

interesting, on the right side of Color Plate 2, a cropped image shows a volume rendering of that 

region. Colors are mapped to the density field such that red and yellow highlight higher density 

regions. More visualization results are displayed in Color Plate 3 and 4. Plate 3 shows direct 

volume visualization of the pressure field and Plate 4 shows Mach number. 

Data partitioning has been mainly done using Chaco [8], a software package developed by Brue 

Hendrickson and Robert Leland at Sandia National Laboratories to partition graphs. Chaco 
provides several different methods as there is no single method that is good for all types of 

data. For the cube data set, since all tetrahedra are identical in size, the partitioning results 

in subvolumes of about the same size not only in terms of the number of elements but also in 

terms of the region of space each occupies. A typical subvolume is shown in the right image of 

Color Plate 1 as the result of partitioning for eight processors. In this regard, one would expect 

each processing node to take about the same time to finish rendering. We compare the processor 

taking the maximum rendering time with the one taking minimum time. The difference between 

the two can be as high as about 40%. This difference is partly due to the early ray-termination 



nodes 2 4 8 16 32 64 128 
view indep prep 110.8 5.146 2.657 1.305 0.731 0.588 0.172 
view dep prep 60.34 23.47 13.21 6.011 3.703 2.221 1.508 
ray casting 2234 1268 769.3 443.2 327.1 177.9 109.3 
ray-seg deliver 4.608 2.503 1.657 1.036 0.89 0.572 0.548 
ray-seg sort 62.45 19.07 3.725 2.713 2.307 1.656 1.303 
ray-seg merge 53.99 9.085 1.139 0.736 0.52 0.279 0.146 

Table 1: Time Breakdown for Rendering the Cube Data, 480x480 Image Size. 

scheme we use. That is, a ray is terminated when the accumulated opacity value reaches unity. 

For the cube data, higher density values are mapped to higher opacity values. If a subvolume 

has a larger projected area of high density region, many rays would terminate earlier and thus 

traverse through fewer elements. 

On the other hand, for the flow data set, because the grid used for the calculations was 

generated in an adaptive manner, a large number of smaller elements occupy a relatively small 

region of space in the overall domain. Consequently, after partitioning, although the subvolumes 

are about the same size in terms of the number of elements, their physical sizes are very different. 

In this case, one would expect the smaller volume in space to project onto a small area of the 

screen and that the corresponding rendering would take far less time than the larger volume. 

Based on our test results, the difference between the maximum and the minimum time is also 

about 40%, much lower than we expected. Although many fewer rays are cast for the smaller 

projected area, the number of elements a ray must traverse is high, compared to a subvolume 

with a large projected area but small number of elements. 

Figure 5 and Table 1 show timing results for rendering the cube data onto a 480x480 image, 

using from two to 128 processors. In Figure 5, only the ray tracing time is plotted because the 

ray tracing time is completely dominant. Note that a logarithmic scale is used for both the x 

and y axes so that both execution time and speedup information can be presented in one plot. 

In all the Tables, the item names are abbreviated as follows: 
view indep prep    -    view independent data preprocessing time 

view dependent data preprocessing time 
•    ray casting time 
■ ray segment delivery time 
■ ray segment sorting time 
■ ray segment compositing time 

As we mentioned earlier, the image compositing time (ray segment delivery + sorting + com- 

positing ) is negligible and normally decreases as more processors are used. The time for the 

view-dependent data preprocessing is also moderate and decreases accordingly. In Table 2, tim- 

ing results using 64 processors are presented for five different image sizes. Since only the image 

compositing process requires node-to-node communication, from these tests, we would like to 

view dep prep 
ray casting 
ray-seg deliver 
ray-seg sort 
ray-seg merge 
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Figure 5: Ray Casting Time for the Cube Data 

image size 240 360 480 720 
view indep prep 0.501 0.671 0.588 1.049 
view dep prep 2.587 2.82 2.221 2.995 
ray casting 49.445 127.78 177.92 480.6 
ray-seg deliver 0.669 0.646 0.572 0.861 
ray-seg sort 1.152 1.405 1.656 2.146 
ray-seg merge 0.078 0.173 0.279 0.232 

Table 2: Time Breakdown for Rendering the Cube Data, Different Image Sizes, 64 Processors. 

determine how the overall image compositing cost would change in proportion to an increase in 

the image size. As the numbers indicate, the image compositing cost grows more slowly than 
the ray casting cost. 

Figure 6 and Table 3 show timing results for rendering the flow data onto a 480x480 image, 

using from two to 128 processors. Again, only the ray tracing time is plotted. We see a similar 

trend in these timing results. According to our timing results, the rendering cost for unstructured 

data is very high. Although we believe that we can tune our present code to achieve about 30% 

improvement in overall rendering time, near real-time rendering rates are still difficult to attain for 

large data sets. Even with faster processors like the IBM SP2, the best we can probably achieve 

is no better than one frame per second when using 256 nodes or more. Further improvement in 

overall rendering performance may be obtained by balancing the load dynamically. 

11 
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Figure 6: Ray Casting Time for the Flow Data. 

number of nodes 2 4 8 16 32 64 128 
view indep prep 3.35 1.659 0.910 0.42 0.23 0.11 0.062 
view dep prep 1.53 0.645 2.371 0.919 0.861 0.879 0.839 
ray casting 1585 677.6 445.3 245.5 187.2 86.07 63.2 
ray-seg deliver 3.02 1.649 0.988 0.662 0.502 0.360 0.316 
ray-seg sort 2.749 3.925 3.856 2.549 1.755 1.195 0.972 
ray-seg merge 0.841 0.817 0.621 0.369 0.224 0.129 0.068 

Table 3: Time Breakdown for Rendering the Flow Data, 480x480 Image Size. 

12 
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Figure 7: Load Imbalance in Rendering the Flow Data. 

4.1     Load Imbalance 

Our timing results show that, on average, the imbalanced loads degrade the overall performance 

by at least 20%. Figure 7 shows the proportion of the total rendering time for the flow data 

(480x480 pixels) due to load imbalance, which is calculated as: 

1 - 
vavg 

where tavg is the average rendering time and tmax is the maximum rendering time. Note that 

this formulation to characterize load imbalance does not reveal the distribution of imbalanced 

load. As a further test, we rendered the flow data using a zoom-in view. Consequently, the 

load imbalance became worse. For the flow data and image size of 480x480 pixels, using 32 

processors and focusing on views similar to the one presented in the left image of Color Plate 2, 

the difference between the maximum and the minimum time was raised from about 40% to 66%. 

The proportion of time devoted to ray casting due to load imbalance then became about 33%. 

In summary, there are five factors which contribute to the load imbalance shown in our timing 
results: 

• subvolume size: number of elements 

• subvolume size: physical size (projected area) 

• opacity transfer functions 

• viewing angle 

• zoom in/out 
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Therefore, it will be difficult to achieve load balancing statically. In fact, we had tried a static 

scheme which works as follows. For p processors, a data volume is partitioned into n-p subvolumes 

where n is a magic number which can be determined after one or two test runs. Then the n-p 

subvolumes are distributed in a round-robin fashion among processors. So now each processor 

rendered possibly many disjointed subvolumes instead of a single large one. Consequently, the 

differences in both the average size of projected areas and in the average number of elements 

handled by each processor would become smaller as n increases. At the same time, many more 

ray segments are generated and result in higher image compositing cost. We were hoping that 

the more balanced load can greatly reduce the ray casting cost. But the timing results did not 

show consistent and significant improvement. Static load balancing is not a solution for the 

zoom-in problem which frequently arises from visualizing highly-adaptive unstructured grids. 

The development of dynamic load balancing methods for rendering unstructured-grid data will 

be our major emphasis of future research. 

5    Conclusions 

Direct volume rendering is a powerful visualization technique for many scientific and engineering 

applications. However, for large unstructured-grid data, volume rendering is too expensive to run 

on a single workstation. We have presented a data-distributed rendering algorithm for parallel 

volume ray-casting on unstructured grids. This algorithm makes possible rendering of large data 

sets that cannot fit into the main memory of a single workstation. 

We would like to point out that the two data sets we have used for testing are considered small. 

In practice, an unstructured-grid data set from computational fluid dynamics applications can 

contain several millions of elements. We have used smaller data sets for testing because they 

are more convenient and do not prevent us from revealing the performance of the rendering 

algorithms. 
Based on our timing results, the computational cost for postprocessing a data set with millions 

of elements would be tremendous, even using a massively parallel computer. Therefore, so 

far, the kind of postprocessing analyses that computational researchers can do using three- 

dimensional computer graphics techniques have been very limited. Our performance studies also 

indicate many opportunities for further optimization of the algorithm and its implementation. In 

particular, imbalanced load significantly affects the overall performance of the renderer. Criteria 

for data partitioning should be further studied to reduce the current load imbalance which is 

above 20%. Dynamic load balancing, though more effective, is harder to implement with a 

data-distributed approach. 
As we approach interactive rendering rates using more processors or more powerful processors, 

we may need to reevaluate both the image-space partitioning and image compositing step as the 

rendering step become less dominant. Data and image I/O, a frequently ignored problem, must 

be improved to make the overall rendering process more efficient.   One important use of such 
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parallel rendering capability is to support runtime monitoring of numerical simulations running 

on a parallel computer. Therefore, our future work will mainly focus on supporting runtime 

visualization, along with the development of dynamic load balancing algorithms. 
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Plate 1: Visualization of the Cube Data. 
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Plate 2: Visualization of the Flow Data. 
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Plate 3: Volume Visualization of the Pressure Field. 

Plate 4: Volume Visualization of the Mach Number, 
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